Research Highlights

Observation of a molecular lattice in the phase of solid oxygen

Of the simple diatomic molecules, oxygen is the only one to carry a magnetic moment. This makes solid oxygen particularly interesting: it is considered a 'spin-controlled' crystal that displays unusual magnetic order.

 

At very high pressures, solid oxygen changes from an insulating to a metallic state; at very low temperatures, it even transforms to a superconducting state. Structural investigations of solid oxygen began in the 1920s and at present, six distinct crystallographic phases are established unambiguously. Of these, the  phase of solid oxygen is particularly intriguing: it exhibits a dark-red colour, very strong infrared absorption, and a magnetic collapse. It is also stable over a very large pressure domain and has been the subject of numerous X-ray diffraction, spectroscopic, and theoretical studies. But although -oxygen has been shown to have a monoclinic C2/m symmetry and its infrared absorption behaviour attributed to the association of oxygen molecules into larger units, its exact structure remains unknown. Here we use single-crystal X-ray diffraction data collected between 13 and 18 GPa to determine the structure of -oxygen. We find that -oxygen is characterized by the association of four O2 molecules into a rhombohedral molecular unit, held together by what are probably weak chemical bonds. This structure is consistent with existing spectroscopic data, and further validated by the observation of a newly predicted Raman stretching mode.